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Motivation
Divergence Free Lagrangian Motion

Given cell κ at initial time t0

Compute nodal displacement from
velocity field u

Updated cell κ̂(t1) has both temporal and
spatial errors

Violation of volume preservation
d

dt

Z
κ(t)

dV 6= 0

Consider ρ = const

Let cell mass Mκ(t) =

Z
κ(t)

ρdV and cell density ρκ =
Mκ(t)

|κ(t)|
,

where |κ(t)| =
R

κ(t) dV

ρκ(t1) =
Mκ(t1)

|κ̂(t1)|
6=

Mκ(t0)

|κ(t0)|
= ρκ(t0)

Cannot maintain a constant density!

SAND 2015-7334C 2



Motivation
Divergence Free Lagrangian Motion

Given cell κ at initial time t0

Compute nodal displacement from
velocity field u

Updated cell κ̂(t1) has both temporal and
spatial errors

Violation of volume preservation
d

dt

Z
κ(t)

dV 6= 0

Consider ρ = const

Let cell mass Mκ(t) =

Z
κ(t)

ρdV and cell density ρκ =
Mκ(t)

|κ(t)|
,

where |κ(t)| =
R

κ(t) dV

ρκ(t1) =
Mκ(t1)

|κ̂(t1)|
6=

Mκ(t0)

|κ(t0)|
= ρκ(t0)

Cannot maintain a constant density!

SAND 2015-7334C 3



Motivation
Divergence Free Lagrangian Motion

Given cell κ at initial time t0

Compute nodal displacement from
velocity field u

Updated cell κ̂(t1) has both temporal and
spatial errors

Violation of volume preservation
d

dt

Z
κ(t)

dV 6= 0

Consider ρ = const

Let cell mass Mκ(t) =

Z
κ(t)

ρdV and cell density ρκ =
Mκ(t)

|κ(t)|
,

where |κ(t)| =
R

κ(t) dV

ρκ(t1) =
Mκ(t1)

|κ̂(t1)|
6=

Mκ(t0)

|κ(t0)|
= ρκ(t0)

Cannot maintain a constant density!

SAND 2015-7334C 4



Motivation
Divergence Free Lagrangian Motion

Given cell κ at initial time t0

Compute nodal displacement from
velocity field u

Updated cell κ̂(t1) has both temporal and
spatial errors

Violation of volume preservation
d

dt

Z
κ(t)

dV 6= 0

Consider ρ = const

Let cell mass Mκ(t) =

Z
κ(t)

ρdV and cell density ρκ =
Mκ(t)

|κ(t)|
,

where |κ(t)| =
R

κ(t) dV

ρκ(t1) =
Mκ(t1)

|κ̂(t1)|
6=

Mκ(t0)

|κ(t0)|
= ρκ(t0)

Cannot maintain a constant density!

SAND 2015-7334C 5



Geometric Conservation Law (GCL)

d

dt

Z
κi(t)

dV =

Z
∂κi(t)

u · n ds

Some recent work:
Use more Lagrangian points

Enforces GCL approximately
Lauritzen, Nair, Ullrich (2010), A conservative semi-Lagrangian
multi-tracer transport scheme on the cubed-sphere grid, JCP.

Heuristic mesh adjustment procedure

No theoretical assurance of completion
Arbogast and Huang (2006), A fully mass and volume
conserving implementation of a characteristic method for
transport problems, SISC.

Monge-Ampére trajectory correction

Accuracy of the MAE scheme determines
accuracy of GCL approximation

Cossette, Smolarkiewicz, Charbonneau (2014), The
Monge-Ampere trajectory correction for semi-Lagrangian
schemes, JCP.

p̃corr
ij = p̃ij + (t − tn)∇φ;

det
∂pij

∂x
= 1
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Optimization-Based Solution

Given a source mesh K̃(Ω), and desired cell volumes c0 ∈ Rm such
that

m∑
i=1

c0,i = |Ω| and co,i > 0∀i = 1, ...,m

Find a volume compliant mesh K(Ω) such that

1 K(Ω) has the same connectivity as the source mesh
2 The volumes of its cells match the volumes prescribed in c0

3 Every cell κi ∈ K(Ω) is valid or convex
4 Boundary points in K(Ω) correspond to boundary points in eK(Ω)
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Requirements for Quadrilateral Cells
Oriented volume of quad cell:

ci(K(Ω)) =
1

2

`
(xi,1−xi,3)(yi,2−yi,4)+(xi,2−xi,4)(yi,3−yi,1)

´
Partitioning of quad into triangles:

(ar, br, cr) =

8>><>>:
(1, 2, 4) r = 1
(2, 3, 4) r = 2
(1, 3, 4) r = 3
(1, 2, 3) r = 4.

Oriented volume of triangle cell:

tr
i (K(Ω)) =

1

2
(xi,ar (yi,cr−yi,br )−xi,br (yi,ar−yi,cr )−xi,cr (yi,br−yi,ar )).

Convexity indicator for a quad cell:

Ii(K(Ω)) =

(
1 if ∀tr

i ∈ κi, |tr
i | > 0

0 otherwise
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Optimization Problem

Objective:

Mesh distance J0(p) =
1

2
d
(
K(Ω), K̃(Ω)

)2
= |p− p̃|2l2

Constraints:
(1) Volume equality ∀κi ∈ K(Ω), |κi| = c0,i

(2) Cell convexity ∀κi ∈ K(Ω) ,∀tri ∈ κi , |tri | > 0

(3) Boundary compliance ∀pi ∈ ∂Ω , γ(pi) = 0

Nonlinear programming problem (NLP)

p∗ = arg min
{
J0(p) subject to (1),(2), and (3)

}
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Simplified Formulation

For polygonal domains
boundary compliance can be subsumed in the volume constraint

convexity can be enforced weakly by logarithmic barrier functions

Objective:

Mesh distance - log barrier J(p) = J0(p)− β

m∑
i=1

4∑
r=1

log tr
i (p)

J0(p) = |p− p̃|2l2
Constraints:

(1) Volume equality ∀κi ∈ K(Ω), |κi| = c0,i

Simplified NLP

p∗ = arg min
{
J(p) subject to (1)

}
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Scalable Optimization Algorithm
Based on the inexact trust region sequential programming (SQP) method
with key properties:

Fast local convergence

Use of very coarse iterative solvers

Handles rank-deficient constraints

Linear systems for an optimization iterate pk are of the form„
I ∇C(pk)T

∇C(pk) 0

« „
v1

v2

«
=

„
b1

b2

«
,

where C(pk) is a nonlinear vector function of coordinates.

Preconditioner

πk =

„
I 0

0
`
∇C(pk)∇C(pk)T + εI

´−1

« ε > 0 small parameter 10−8h

∇C(pk)∇C(pk)T formed
explicitly

Smoothed aggregation AMG
used for inverse

Heinkenschloss, Ridzal (2014), A matrix-free trust-region SQP method for equality constrained optimization SIOPT.
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Scalablility Test
To challenge the algorithm we test performance as follows:

Start with uniform n× n mesh and advance to final time using velocity field
Apply algorithm to the deformed mesh at the final time using initial mesh volumes

Analytic Hessian

n SQP CG GMRES tot. GMRES av. CPU % ML time
64 5 15 101 2.8 2.475 66
128 4 9 106 4.1 8.799 78
256 5 5 130 5.0 45.733 83
512 6 1 100 3.8 184.446 83

Gauss-Newton Hessian

n SQP CG GMRES tot. GMRES av. CPU % ML time
64 5 5 64 2.5 1.666 63
128 4 4 79 3.8 6.466 82
256 5 5 126 4.8 43.241 86
512 6 6 100 3.8 183.697 86

Almost constant GMRES iterations
CPU per SQP iteration scales linearly with problem
Computational time dominated by AMG (ML) preconditioner
The algorithm inherits its scalability from the AMG solver
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Lagrangian Motion

Swirling velocity field: u(x, t) =

(
cos
(

tπ
T
)
sin(πx)2 sin(2πy)

− cos
(

tπ
T
)
sin(πy)2 sin(2πx)

)
8x8 mesh, T = 8, CFL = 2, β = 0, forward Euler for trajectories.

Exact Uncorrected Optimized
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Improvements in Mesh Geometry

We observe significant improvements in the geometry of the corrected mesh:

The shapes of the corrected cells are closer to the exact Lagrangian shapes

The barycenters of the corrected cells are closer to the exact barycenters

The trajectories of the corrected cells are closer to the exact Lagrangian
trajectories

Exact Uncorrected Optimized
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Enforcement of Convexity Constraints
β = 0 β = 2.0× 10−6 β = 2.0× 10−5
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Enforcement of Convexity Constraints

β = 2.0× 10−5
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Application to Semi-Lagrangian Transport

Want to solve:
∂ρ

∂t
+∇ · (ρu) = 0

Given cell volume ci =
R

κi
dV , cell mass mi =

R
κi

ρ(x, t)dV , and cell average
density ρi = mi/ci at time t

!K (Ω ,t)

K0 (Ω )

ρi (t)
!ρi (t)

ρi (t +Δt)

K0 (Ω )

Remap Lagrangian Update 

1 Define Lagrangian departure cells: ci → c̃i

2 Remap from fixed grid to departure grid: ρi → ρ̃i, m̃i = ρ̃ic̃i

3 Lagrangian update: mi(t + ∆t) = m̃i, ρi(t + ∆t) = mi(t + ∆t)/ci

We use linear reconstruction of density with Van Leer limiting for remap.
Dukowicz and Baumgardner (2000), Incremental remapping as a transport/advection algorithm, JCP.
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2 Volume correction: ĉi → c̃i
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Semi-Lagrangian Transport Results

Constant density, rotational flow

Uncorrected Corrected Comparison
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Semi-Lagrangian Transport Results

Cylindrical density, rotational flow

Uncorrected Corrected Comparison
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Multi-Material Semi-Lagrangian Transport
Consider transport of volume fraction
of material s

∂Ts

∂t
+ u · ∇Ts = 0, s = 1, . . . , 3,

Ts,i(t) =

R
κi(t)

Ts dVR
κi(t)

dV
=

|κs,i(t)|
|κi(t)|

|Ωn
s | =

mX
i=1

T n
s,i|κi|

Without volume correction:
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|Ωn+1
s | =

mX
i=1

T n+1
s,i |κi| =

mX
i=1

eT n
s,i|κi| 6=

mX
i=1

eT n
s,i|eκi(t

n)| = |eΩn
s | = |Ωn

s | .

SAND 2015-7334C 34



Conclusions

Presented a new approach for improving the accuracy and physical
fidelity of numerical schemes that rely on Lagrangian mesh motion

Optimization-based volume correction
Is computationally efficient
Provides significant geometric improvements in corrected meshes
Enables semi-Lagrangian transport methods to preserve volumes
and constant densities

Future work
Further development of mesh quality constraints and rigorous
enforcement of mesh validity
Investigate utility of algorithm for mesh quality improvement
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