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Motivation
Divergence Free Lagrangian Motion

@ Given cell x at initial time ¢°

@ Compute nodal displacement from
velocity field u

@ Updated cell #(t1) has both temporal and
spatial errors

Violation of volume preservation

)
— dv #0
dt J () 7

Consider p = const

M,
Let cell mass M (t) = / pdV and cell density p,, = K(t),
#(t) k(2]
where |k(t)] = [, ;) dV

O M(tY) |, Ml(t%)
=) 7 @)~

Cannot maintain a constant density!

PN(tl)
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Geometric Conservation Law (GCL)

i / dV = u-nds
dt Joes(e) ori(t)
Some recent work:

Use more Lagrangian points
@ Enforces GCL approximately

Lauritzen, Nair, Ullrich (2010), A conservative semi-Lagrangian
multi-tracer transport scheme on the cubed-sphere grid, JCP.

Heuristic mesh adjustment procedure

Adjusted point to remain

@ No theoretical assurance of completion o o WL Snge,
Arbogast and Huang (2006), A fully mass and volume neously in the direction
conserving implementation of a characteristic method for % Pelits ljustad, “oile:
transport problems, SISC. ways” to the flow.
Monge-Ampére trajectory correction Flow

@ Accuracy of the MAE scheme determines ~corr PRIy

accuracy of GCL approximation Pi; = pija+ (t—tn) Ve
Cossette, Smolarkiewicz, Charbonneau (2014), The det Pij _
Monge-Ampere trajectory correction for semi-Lagrangian ox

schemes, JCP.
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Optimization-Based Solution

Given a source mesh K (), and desired cell volumes ¢, € R™ such
that

m
D =19 and ¢,;>0vi=1,..,m
i=1
Find a volume compliant mesh K (Q2) such that
@ K (Q) has the same connectivity as the source mesh
@ The volumes of its cells match the volumes prescribed in co
© Every cell x; € K(Q) is valid or convex
@ Boundary points in K(Q) correspond to boundary points in K ()

SAND 2015-7334C 7
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Requirements for Quadrilateral Cells

Oriented volume of quad cell:
1

e (K@) = 5

(i1—i3)(Ys2—yia)H(@io—Tia) (i 3—Yin1))

Partitioning of quad into triangles:

(1,2,4) r=1

_ ) (23,4) r=2
(@rbrer) =N (13,4) r=3
(1,2,3) r=4.

Oriented volume of triangle cell:

r 1
£ (K(Q) = 5 (@i, (Yier ~ib, ) =T, (Yisar —Yirer )= Tiscr (Vi —Yisar))-
Convexity indicator for a quad cell:

1 if VD € kg, |E]] >0
0 otherwise

T(K(Q) = {

SAND 2015-7334C 8
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Optimization Problem

Objective:
Mesh distance  Jy(p) = %d(K(Q),f((Q))2 =p—-p3

Constraints:
(1) Volume equality Vi € K(Q), |ki| = o
(2) Cell convexity Vi € K(Q),Vt] € K4, [t >0

(8) Boundary compliance Vp; € 9Q,~v(p;) =0

Nonlinear programming problem (NLP)

p* = arg min{ Jo(p) subject to (1),(2), and (3)}

SAND 2015-7334C 9
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Simplified Formulation

For polygonal domains
@ boundary compliance can be subsumed in the volume constraint
@ convexity can be enforced weakly by logarithmic barrier functions

Objective:
m 4
Mesh distance - log barrier .J(p) = Jo(p) — 8 _ > logt;(p)
i=1 r=1
Jo(p) = |p — PI7:
Constraints:

(1) Volume equality  Vk; € K(Q),|ki| = co,

Simplified NLP

p* = arg min{J(p) subject to (1)}

SAND 2015-7334C
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Based on the inexact trust region sequential programming (SQP) method
with key properties:

Scalable Optimization Algorithm

@ Fast local convergence
@ Use of very coarse iterative solvers
@ Handles rank-deficient constraints

Linear systems for an optimization iterate p* are of the form

(e "8 ) ()= (5 )

where C(p*) is a nonlinear vector function of coordinates.

@ ¢ > 0 small parameter 10~8h
@ vC(p*)vC(p*F)T formed
ok = ( I . 0 o . ) explicitly

0 (VC@")VC(P")T +eI) @ Smoothed aggregation AMG
used for inverse

Preconditioner

Heinkenschloss, Ridzal (2014), A matrix-free trust-region SQP method for equality constrained optimization SIOPT.
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Scalablility Test

To challenge the algorithm we test performance as follows:

@ Start with uniform n x n mesh and advance to final time using velocity field
@ Apply algorithm to the deformed mesh at the final time using initial mesh volumes

Analytic Hessian

n SQP CG GMREStot. GMRESav. CPU % ML time
64 5 15 101 2.8 2.475 66
128 4 9 106 41 8.799 78
256 5 5 130 5.0 45.733 83
512 6 1 100 3.8 184.446 83
Gauss-Newton Hessian
n SQP CG GMREStot. GMRESav. CPU % ML time
64 5 5 64 25 1.666 63
128 4 4 79 3.8 6.466 82
256 5 5 126 4.8 43.241 86
512 6 6 100 3.8 183.697 86

@ Almost constant GMRES iterations

@ CPU per SQP iteration scales linearly with problem

@ Computational time dominated by AMG (ML) preconditioner
@ The algorithm inherits its scalability from the AMG solver
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Lagrangian Motion

t_7|— . 2 . 2
Swirling velocity field: u(x,t) = ( cos () sin(ra)*sin(2y) )

— cos (L) sin(7y)? sin(27x)
8x8 mesh, T =8, CFL =2, 8 =0, forward Euler for trajectories.

Exact Uncorrected Optimized
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Lagrangian Motion

t_7r . 2 .
Swirling velocity field: u(x, ) = ( cos () sin(mz)? sin(2my) )

— cos (&) sin(my)? sin(2mx)

8x8 mesh, T =8, CFL =2, 3 =0, forward Euler for trajectories.

Exact Uncorrected Optimized
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Lagrangian Motion

tm

- N cos (&) sin(mx)? sin(27y
Swirling velocity field: u(x,t) = ( _C(EST()_) S(in(szy s(in(271)'x) )
T

8x8 mesh, T =8, CFL = 2, 3 =0, forward Euler for trajectories.

Exact Uncorrected Optimized
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Lagrangian Motion

t_7r . 2 . 2
Swirling velocity field: u(x, ) = ( cos () sin(mz)? sin(2my) )

— cos (&) sin(my)? sin(2mx)
8x8 mesh, T =8, CFL =2, 3 =0, forward Euler for trajectories.

Exact Uncorrected Optimized
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Lagrangian Motion

t_7r . 2 .
Swirling velocity field: u(x, ) = ( cos () sin(r)?sin(2y) )

tm

— cos (&) sin(my)? sin(2mx)
8x8 mesh, T =8, CFL =2, 3 =0, forward Euler for trajectories.

Exact Uncorrected Optimized
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Lagrangian Motion

t_7r . 2 . 2
Swirling velocity field: u(x,t) = ( cos () sin(ra)*sin(2y) )

—cos () sin(7y)? sin(27x)
8x8 mesh, T =8, CFL =2, 8 =0, forward Euler for trajectories.

Exact Uncorrected Optimized

Wz =n Wy
I WiZN
oS

=71

=71

SAND 2015-7334C



Lagrangian Motion

t_7r . 2 . 2
Swirling velocity field: u(x,t) = ( cos () sin(ra)*sin(2y) )

)
— cos (42) sin(7y)? sin(27x)

8x8 mesh, T =8, CFL =2, 3 =0, forward Euler for trajectories.

Exact

Optimized
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Lagrangian Motion

t_7r . 2 . 2
Swirling velocity field: u(x,t) = ( cos () sin(mz)* sin(2my) )

— cos (42) sin(7y)? sin(27x)

8x8 mesh, T =8, CFL =2, 3 =0, forward Euler for trajectories.

Exact Uncorrected Optimized
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Improvements in Mesh Geometry

We observe significant improvements in the geometry of the corrected mesh:

@ The shapes of the corrected cells are closer to the exact Lagrangian shapes

Exact Uncorrected Optimized
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Improvements in Mesh Geometry

We observe significant improvements in the geometry of the corrected mesh:

@ The shapes of the corrected cells are closer to the exact Lagrangian shapes
@ The barycenters of the corrected cells are closer to the exact barycenters

@ - cxact Lagrangian mesh
B - uncorrected
*— optimized
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Improvements in Mesh Geometry

We observe significant improvements in the geometry of the corrected mesh:

@ The shapes of the corrected cells are closer to the exact Lagrangian shapes
@ The barycenters of the corrected cells are closer to the exact barycenters

@ The trajectories of the corrected cells are closer to the exact Lagrangian
trajectories

Rotation Swirl
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Application to Semi-Lagrangian Transport

Want to solve: % +V-(pu) =0

Given cell volume ¢; = [ dV, cellmass m; = [_ p(x,t)dV, and cell average
density p; = m;/c; attime ¢

Remap Lagrangian Update

k() K,(Q)

K@l

Q Define Lagrangian departure cells: ¢; — ¢&;
e Remap from fixed grid to departure grid: p; — p;, m; = p:&;
© Lagrangian update: m;(t + At) = i, pi(t + At) = my(t + At)/e;
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Application to Semi-Lagrangian Transport

Want to solve: % +V-(pu)=0
Given cell volume ¢; = fﬁ_ dV, cell mass m; = fn_ p(x,t)dV, and cell average
density p; = m;/c; attime ¢
Remap Lagrangian Update

K,(2) K,(Q)

K@l

° Define Lagrangian departure cells: ¢; — &;

@ Volume correction: & — &

© Remap from fixed grid to departure grid: p; — p;, M = pici

@ Lagrangian update: m;(t + At) = , pi(t + At) = mi(t + At)/c;
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Application to Semi-Lagrangian Transport

Want to solve: % +V-(pu)=0

Given cell volume ¢; = fm dV, cell mass m; = fni p(x,t)dV, and cell average
density p; = m;/c; attime ¢
Remap Lagrangian Update

k() K,(2)

K@l

ﬂ Define Lagrangian departure cells: ¢; — &;

@ Volume correction: & — &

© Remap from fixed grid to departure grid: p; — p;, M = pici

@ Lagrangian update: m;(t + At) = , pi(t + At) = mi(t + At)/c;

We use linear reconstruction of density with Van Leer limiting for remap.

Dukowicz and Baumgardner (2000), Incremental remapping as a transport/advection algorithm, JCP.
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Semi-Lagrangian Transport Results

Constant density, rotational flow

Uncorrected Corrected Comparison
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Semi-Lagrangian Transport Results

Cylindrical density, rotational flow

Uncorrected Corrected Comparison

Forward Euler with At = 0.006.
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Multi-Material Semi-Lagrangian Transport

Consider transport of volume fraction

of material s —
T, ]
88t8+u-VT5:0, s=1,...,3, .
Lty = o TV a0 o
8,1 = =
fni(t) av ki ()]
m’“q__‘w_v
n . )
|Q?| = Z T£1|/i7,| w0 T T comon
i=1 wror
Without volume correction: i
m m ~ m B N
QY = ZT;:r1|H¢| = ET;1|/<;,| # ZTﬁfzI%z(t”)l — a7 = |n|.
i=1 i=1 i=1

SAND 2015-7334C



Sandia
National
Laboratories

Conclusions

Presented a new approach for improving the accuracy and physical
fidelity of numerical schemes that rely on Lagrangian mesh motion

@ Optimization-based volume correction
@ Is computationally efficient
@ Provides significant geometric improvements in corrected meshes
@ Enables semi-Lagrangian transport methods to preserve volumes
and constant densities

@ Future work

@ Further development of mesh quality constraints and rigorous
enforcement of mesh validity
@ Investigate utility of algorithm for mesh quality improvement
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