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Introduction

Multi-fluid multi-velocity models with friction appears in

multiphase flows (eg. [SA99])

interpenetration mixing models,...

Goal: Scannapieco-Cheng mixing model [SC02, Ena07]

friction coefficient ν := ν(δu, ρ, ...) may vary a lot

Need a scheme that behaves well ∀ν ≥ 0 =⇒ Asymptotic
Preserving [Jin99, Gos13, GT02]. (Euler with friction [Fra14])

In this studdy

ν: positive constant data

we consider two compressible fluids

ALE scheme: each fluid has its own grid that must fit at timestep begining

t = tn t = tn+1, Lagrangian t = tn+1, Ale

In the following we focus only on the Lagrangian phase
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Bi-fluid model

Lagrangian formulation

Let α ∈ {f1, f2} (β denoting the other fluid), the model writes

(1)

ραDα
t τ

α = ∇ · uα,
ραDα

t u
α = −∇pα−νρδuα,

ραDα
t E

α = −∇ · (pαuα)−νρδuα · u,

where δφα = −δφβ = φα − φβ ν: friction pα = pα(ρα, εα)

Dα
t := ∂t + uα · ∇ =⇒ Dα

t 6= Dβ
t

ρ := ρα + ρβ ρu := ραuα + ρβuβ

also, one has

(2) TαDα
t η

α≥ ν τ
α

τβ
δuα · δuα ≥ 0.

Conservation

For each fluid f1, f2, the model is conservative in volume and mass

The model is conservative in the sum of momenta and in the sum of total
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Asymtotic limit of the model

Limit model

When ν → +∞, (1) behaves has the following five equations model. ∀α ∈ {f1, f2},
β denoting the other fluid

(3)

ρDtu = −∇(pα + pβ),

ραDtτ
α = ∇ · u,

ραDtE
α = −ρ

α

ρ
∇(pα + pβ) · u− pα∇ · u,

Note that u = uα = uβ , so Dt = Dα
t = Dβ

t .

Remark

Suming α and β equations gives an Euler mixture model that follows Dalton’s law.

Derivation example

The model is obtained formally by means of Hilbert expension:
Letting ε = ν−1, one writes develops the variables as φ = φ0 + εφ1 +O(ε2) and
multiplying the obtained equations by powers of ε, passes formally to the limit.
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Continuous in time semi-discrete scheme (1/5)

Let ω ∈ [0, 2]. Then ∀α, β ∈ {f1, f2}, α 6= β,

ραr := 1
#Jr

∑
j∈Jr

ραj , ρr := ραr + ρβr , ur :=
ραr uαr +ρβr uβr
ραr +ρ

β
r

, ujr :=
ραr uαj +ρβr uβj

ραr +ρ
β
r

.

(4)

mαj dtτ
α
j =

∑
r

Cjr · uαr ,

dtm
α
j =0,

mαj dtu
α
j =−

∑
r

Fαjr−ω
∑
r

νρrBjr δu
α
j − (1− ω)

∑
r

νρrBjr δu
α
r ,

mαj dtE
α
j =−

∑
r

Fαjr · u
α
r −
∑
r

νρru
T
r Bjr δu

α
r + ω

∑
r

νρru
T
jr Bjr (δuαr − δuαj ),

where uαr and Fαjr satisfy

(5) Fαjr = Cjrp
α
j − Aαjr (uαr − uαj )−νρrBjr δu

α
r and

∑
j

Fαjr = 0.

Blue terms are friction discretization corrections to usual cell-centered schemes.
Bjr SPD-matrix such that

∑
r Bjr = Vj I .

Ajr :=

Glace[DM05]︷ ︸︸ ︷
(ρc)j

Cjr ⊗ Cjr

‖Cjr‖
or Ajr :=

Eucclhyd [MABO07]︷ ︸︸ ︷
(ρc)j

∑
i∈Fjr

Ni
jr ⊗Ni

jr

‖Ni
jr‖ CEA | Würzburg, September 2015 | PAGE 5/25



Continuous in time semi-discrete scheme (2/5)

(5) =⇒
∑
j

(
Aαjr + νρrBjr −νρrBjr

−νρrBjr Aβjr + νρrBjr

)
︸ ︷︷ ︸

Ar

(
uαr
uβr

)
=
∑
j

(
Aαjr u

α
j + Cjrp

α
j

Aβjru
β
j + Cjrp

β
j

)
︸ ︷︷ ︸

br

.

Ar is a SPD-matrix =⇒ ∃!(uαr , u
β
r ) =⇒ the scheme (4)–(5) is well defined.

Property (a priori estimate)

Let (uαr
ν , uβr

ν
) denote the solution of the linear system for a given ν. One has the

following estimates: ∀α, β ∈ {f1, f2}, α 6= β, ∀ν ≥ 0

tuαr
νAαr u

α
r
ν + tuβr

ν
Aβr u

β
r
ν ≤ tuαr

0Aαr u
α
r

0 + tuβr
0
Aβr u

β
r

0

where ∀α,Aαr =
∑

j A
α
jr , are the nodal matrices of the mono-fluid cell-centered scheme.

Also, one has
(
uαr

ν − uβr
ν)T ∑

j Bjr

(
uαr

0 − uβr
0
)
≥ 0. If Bjr = Vjr I , it implies(

uαr
ν − uβr

ν
, uαr

0 − uβr
0
)
≥ 0
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Continuous in time semi-discrete scheme (3/5)

Property (Conservation)

∀α, β ∈ {f1, f2}, α 6= β, the scheme defined by (4)–(5) ensures conservation

of mass and volume for each fluid,

of the sums of the fluids’ momenta and total energies.

Property (Entropy)

The first-order continuous in time scheme defined by (4)–(5) satisfies, ∀ω ∈ [0, 2],
the following entropy inequality ∀α ∈ {f1, f2}

mα
j T

α
j dtη

α
j ≥

(
1− ω

2

)∑
r

νρβr
tδuαr Bjrδu

β
r +

ω

2

∑
r

νρβr
tδuαj Bjrδu

α
j ≥ 0.

This inequality is consistent with (2).
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Continuous in time semi-discrete scheme (4/5)

Limit scheme
Let ω 6= 0. ∀α, β ∈ {f1, f2}, α 6= β, ∀j ∈M, if (ραj , u

α
j ,E

α
j ) is constant, then

scheme (4)–(5), behaves asymptotically (when ν → +∞) as

(6)

mαj dtτ
α
j =

∑
r

Cjr · ur ,

dtm
α
j = 0,

(mαj + mβj )dtuj = −
∑
r

Fαjr −
∑
r

Fβjr ,

mαj dtE
α
j = −

∑
r

Cjp
α
j · ur +

∑
r

uTr A
α
jr (ur − uj )−

ραj ρ
β
j

ρj

∑
r

uTj δ

(
Aαjr

ραj

)
(ur − uj ),

with Fαjr + Fβjr = Cjr (pαj + pβj )− (Aαjr + Aβjr )(ur − uj ), and
∑
j

Fαjr = 0.

One has ur = uαr = uβr and uj = uαj = uβj

Derivation example

It is obtained formally by means of Hilbert expension.
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Continuous in time semi-discrete scheme (5/5)

Property (Consistency)

The limit scheme (6) is weakly consistent with the asymptotic model (3).
sketch of proof

Based on[Des10]. Total energy balance equation is the difficult part.

Asymptotic preserving scheme

In order to studdy the asymptotic preservingness of the scheme, it remains to show
that the timestep does not tend to 0 when ν → +∞.
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Fully discrete scheme (1/5)

Let ω ∈]0, 2] and θ ∈ {n, n + 1}. Also, uθjr :=
ραr

nuαj
θ+ρβr

n
uβj

θ

ραr
n+ρ

β
r
n and unr =

ραr
nuαr

n+ρβr
n
uβr

n

ραr
n+ρ

β
r
n .

(7)

ταj
n+1 = ταj

n +
∆t

mαj

∑
r

Cn
jr · u

α
r
n,

uαj
n+1 = uαj

n −
∆t

mαj

(∑
r

Fα,njr +ω
∑
r

νρnr B
n
jr δu

α
j
θ + (1− ω)

∑
r

νρnr B
n
jr δu

α
r
n

)
,

Eαj
n+1 = Eαj

n −
∆t

mαj

(∑
r

Fα,njr · u
α
r
n+
∑
r

νρnr
tunr B

n
jr δu

α
r
n

−ω
∑
r

νρnr
tuθjrB

n
jr

(
δuαr

n − δuαj
θ
))

,

where the uαr
n and Fα,njr are computed explicitly as

(8) Fα,njr = Cn
jrp
α
j
n − Aα,njr (uαr

n − uαj
n)−νρnr Bn

jr δu
α
r
n, and

∑
j

Fα,njr = 0

θ =

{
n explicit scheme,

n + 1 semi-implicit scheme.
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Fully discrete scheme (2/5)

Let Cαn :=

{
j ∈M/

∑
r C

n
jr · u

α
r
n < 0

}
, the set of compressive cells.

Property (Positivity of density)

Let us assume that ∀α ∈ {f1, f2}, ∀j ∈M, ραj
n > 0. Let ∆tρ > 0 such that,

∀α ∈ {f1, f2}, ∀j ∈ Cαn, ∆tρ <
Vαj

n

−
∑

r C
n
jr · uαr n

.

Then, the scheme (7)–(8) defined by ∆t = ∆tρ ensures, ∀ω ∈]0, 2], that

∀α ∈ {f1, f2}, ∀j ∈M, ραj
n+1 > 0.
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Fully discrete scheme (3/5)

Property (Positivity of internal energy)
Let us assume that ∀α ∈ {f1, f2}, ∀j ∈M, eαj

n > 0.

Then, there exists ∆te > 0 such that the scheme (7)–(8) defined by ∆t = ∆te ensures,
∀θ ∈ {n, n + 1} and ∀ω ∈ [0, 2], that

∀α ∈ {f1, f2}, ∀j ∈M, eαj
n+1 > 0.

Explicit case ∀j , ∀α, ∃∆tαj
e > 0 s.t. (7)–(8) with ∆t = ∆tαj

e =⇒ eαj
n+1 > 0.

∆tαj
e := positive root of a second-order polynomial (depends on ν).

∆t may tend to 0 when ν →∞.

Semi-implicit case In this case, one has to find the smallest positive root of a rationnal
function. However, one can give a sufficient positivity condition:

eαj
n+1 ≥ eαj

n +
∆t

mαj

[∑
r

t(uαj
n − uαr

n)Aαjr
n(uαj

n − uαr
n)−

∑
r

pαj
nCn

jr · u
α
r
n

]

−
∆t2

2mαj
2

(∑
r

Aαjr
n(uαj

n − uαr
n)

)2

.

Right hand side being algebraically the internal energy variation for mono-fluid cell-center
scheme, i.e. it is algebraically independent of ν.
unr = unr (ν), but ∆te 6→

ν→∞
0 for given unr to ensure eαj

n+1 > 0
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Fully discrete scheme (4/5)

Property (Entropy stability)

Let U :=
(
τ, uT ,E

)T
and let η the entropy. There exists ∆tη > 0 , such that

∀α, β ∈ {f1, f2}, such that α 6= β, if the pressure law pα : (ρ, e)→ pα(ρ, e) is a
differentiable function, then the scheme (7)–(8) defined by ∆t = ∆tη , ∀ω ∈]0, 2] and
θ ∈ {n, n + 1}, ensures that,

1 the scheme is entropy stable:

∀j ∈M, η
(
Uαj

n+1
)
≥ η

(
Uαj

n
)
,

2 and ∀j ∈M, one has the following alternative. If ∀r ∈ Rj , Cn
jr · u

α
r
n = Cn

jr · u
α
j
n and

δuαr
n − δuαj

θ = 0, then

Tαj
nmαj

η(Uαj
n+1)− η(Uαj

n)

∆t
≥ ν

∑
r

ρβr
tδuαr

nBn
jr δu

α
r
n +O(∆t),

else

Tαj
nmαj

η(Uαj
n+1)− η(Uαj

n)

∆t
≥ ν

∑
r

ρβr
tδuαr

nBn
jr δu

α
r
n.

Remark
This is an existence result! It does not provide an explicit ∆tη > 0 for general EOS.
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Fully discrete scheme (5/5)

Property (Entropy stability for ideal gas)

Let U :=
(
τ, uT ,E

)T
and let η the entropy. Let f1 and f2 be two ideal gases.

Then, one can compute explicitly ∆tη > 0 , such that ∀α, β ∈ {f1, f2}, such that α 6= β,
the scheme (7)–(8) defined by ∆t = ∆tη , ∀ω ∈]0, 2] and θ ∈ {n, n + 1}, ensures that, the
scheme is entropy stable:

∀j ∈M, η
(
Uαj

n+1
)
≥ η

(
Uαj

n
)
.

Remark

If θ = n, ∆tη > 0 is the positive root of a second-order polynomial that depends on ν.
As for internal energy positivity, these term can blow up, analysis not finished.

∆tη calculation (explicit)

If θ = n + 1, ∆tη > 0 is the smallest positive root of a rationnal function. For 2 ≥ γ,
one can show according to the case (compression or expension) that negative termes

are bounded independently of ν. ∆tη calculation (semi-implicit)

Case 1 < γ < 2 is being analyzed. Not finished yet since very computational, but
seems ok.
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Numerical tests

Reference “naive” scheme

mαj dtτ
α
j =

∑
r

Cjr · uαr ,

dtm
α
j =0,

mαj dtu
α
j =−

∑
r

Fαjr−
∑
r

νρrBjr δu
α
j ,

mαj dtE
α
j =−

∑
r

Fαjr · u
α
r −
∑
r

νρru
T
jr Bjr δu

α
j ,

where uαr and Fαjr satisfy

Fαjr = Cjrp
α
j − Aαjr (uαr − uαj ) and

∑
j

Fαjr = 0.

Remark
This scheme is conservative, stable and weakly consistent with (1). However, one cannot
establish (even formally by means of Hilbert expension) that its limit scheme is consistent
with (3). This scheme a priori does not preserve the asymptotic.
It is a good candidate for comparisons.
In order to avoid stability problems, δuαj term is implicited in momentum equation.
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“Sod shock tube”

Data

Ideal gas with γ = 1.4.
U := (ρ, u, p)T , UL := (1, 0, 1)T , UR := (0.125, 0, 0.1)T , Uε := (ε, 0, ε)T .
On sets at time t = 0

Uα(0) = 1]0,0.5[(U
L − Uε) + 1]0.5,1[U

ε

Uβ(0) = 1]0,0.5[U
ε + 1]0.5,1[(U

R − Uε).

In the analyzed scheme, each fluid occupies the whole computational domain.
Reference solution is computed using 105 cells.
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“Sod shock tube”, ν = 102

Time t = 0.14. 200 cells. Fluid α treated as Lagrangian.
Density plot.

AP scheme non AP scheme
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“Sod shock tube”, ν = 102

Time t = 0.14. 200 cells. Fluid α treated as Lagrangian.
Internal energy plot.

AP scheme non AP scheme
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“Sod shock tube”, ν = 102

Time t = 0.14. 200 cells. Fluid α treated as Lagrangian.
Velocity plot.

AP scheme non AP scheme
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“Sod shock tube”, ν = 102

Time t = 0.14. 200 cells. Fluid α treated as Lagrangian.
Velocity difference plot.

AP scheme non AP scheme

Results for ν = 105.
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Rayleigh-Taylor instability

0.7

0.25

0.01

α

β

g

Data

At time t = 0, one sets

ρα = 0.8,

ρβ = 0.25,

uα = uβ = 0,

p(y) = p0 +

∫ y

0

ρg · ey .

Interface position is given by
f (x) = 0.35 + 0.05 cos(8πx).

Scheme

A well-balanced gravity discretization is
used [CL94].

Tests

Compares with mono-velocity model,

ν value variation.
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Rayleigh-Taylor instability, ALE simulation, ν = 106, t = 0.9

Bi-Fluid model Standard scheme
(mono-velocity)
+Mixing model
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Rayleigh-Taylor instability, ALE simulation, t = 0.7

mesh: 40× 112

ν = 102 ν = 104 ν = 106
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Rayleigh-Taylor instability, ALE simulation, t = 0.7

mesh: 60× 168

ν = 102 ν = 104 ν = 106
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Rayleigh-Taylor instability, ALE simulation, t = 0.7

mesh: 80× 224

ν = 102 ν = 104 ν = 106
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Triple-point problem

3

1 6

1.5

ρL,pL

ρL,pl

ρl ,pl

Data

Red fluid is α, blue is β. Initially ρL = 1, ρl = 0.125, pL = 1, pl = 0.1, u = 0.
γ = 1.4.
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Triple-point problem, ν = 106, t = 5

Bi-Fluid model

Standard scheme (mono-velocity)+mixing model
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Triple-point problem, t = 5
9

0
×

4
0

1
4

0
×

6
0

2
1

0
×

9
0

ν = 10 ν = 100 ν = 106
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Conclusions and perspectives (1/2)

Conclusions

First-order cell-center scheme for bi-fluid with friction model
explicit or sem-implicit treatment of the friction term
class of schemes depending on a real parameter ω

Properties for ω ∈]0, 2]
conservative
stablility

density positivity: provided explicit ∆t > 0
internal energy positivity: provided explicit ∆t > 0
entropy increase:

general EOS: existence of ∆t > 0
ideal gas: provided explicit ∆t > 0

Asymptotic preserving
limit scheme consistent with limit model
θ = n + 1 and 2 ≤ γ, timestep does not go to 0 when ν → +∞.

Validated through numerical tests
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Conclusions and perspectives (2/2)

Perspectives

θ = n + 1: finish perfect gas stability analysis 1 < γ < 2 (almost done)

θ = n: can it work? not even tested numerically...

Varying ν (interpenetration mixing model)
analysis should a priori be straight forward
ω kept uniform or varying with ν?

second-order (AP analysis?)

extend to multiple (more than two) fluids

Differently supported fluids

Fully Lagrangian approach
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Example of Hilbert expension analysis
back

Formal calculation of momentum limit equation when ν → +∞ in (1)

ραDαt uα = −∇pα −
1

ε
ρδuα, where ε = ν−1

ρα>0⇐⇒ ∂tu
α + (∇uα)uα = −

∇pα

ρα
−

1

ε

ρ

ρα
δuα,

=⇒ ∂t(δu
α) + δ((∇u)u)α = −δ

(
∇p
ρ

)α
−

1

ε
λδuα, where λ =

ρ2

ραρβ
.

Hilbert expansion (φ = φ0 + εφ1 +O(ε2)) for all variables gives

(9) ∂t(δu
α,0) + δ ((∇u)u)α,0 = −δ

(
∇p
ρ

)α,0
− λ0

(
1

ε
δuα,0 + δuα,1

)
− λ1δuα,0 +O(ε).

Formal analysis

(9)× ε =⇒ λ0δuα,0 = O(ε) =⇒ δuα,0 = 0.

uα,0 = 0
(9)

=⇒ δuα,1 = − 1
λ0 δ

(
∇p
ρ

)α,0
and u0 := u0 = uα,0 = uβ,0 and

Dt := Dαt = Dβt .

So momentum equation reads

ρα,0Dtu
0 = −∇pα,0 + ρ0 1

λ0
δ

(
∇p
ρ

)α,0
= −

ρα,0

ρ0

(
pα,0 + pβ,0

)
.
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Consistency proof (1/2)
back

Let ρ := ρα + ρβ , E := ραEα+ρβEβ

ρ
, c := ραcα+ρβcβ

ρ
and p := pα + pβ

Property (B. Després [Des10])

dtmj = 0,

mjdtτj =
∑
r

Cjr · ur ,

mjdtuj = −
∑
r

Fjr ,

mjdtEj = −
∑
r

Fjr · ur ,

where Fjr = Cjrpj − Ajr (ur − uj ), and
∑
j

Fjr = 0,

is weakly consistent with the following system of equations

ρDtτ = ∇ · u,

ρDtu = −∇p,

ρDtE = −∇ · pu.
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Consistency proof (1/2)
back

Let ρ := ρα + ρβ , E := ραEα+ρβEβ

ρ
, c := ραcα+ρβcβ

ρ
and p := pα + pβ

Property (B. Després [Des10])

dtmj = 0,

mjdtτj =
∑
r

Cjr · ur ,

mjdtuj = −
∑
r

Fjr ,

mjdtEj = −
∑
r

Fjr · ur ,

where Fjr = Cjr (pαj + pβj )− (Aαjr + Aβjr )(ur − uj ), and
∑
j

Fjr = 0,

is weakly consistent with the following system of equations

ρDtτ = ∇ · u,

ρDtu = −∇(pα + pβ),

ρDtE = −∇ · (pα + pβ)u.
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Consistency proof (2/2)
back

Proof.
Consistency for volume, mass and momentum is a direct consequence of [BD]

Energy balance rewrites:

ραDtEα = −∇ · (pα + pβ)u + pβ∇ · u + ρβ

ρ
∇(pα + pβ) · u.

ραj dtE
α
j =

[BD]
≈

(
−∇·(pα+pβ )u

)∣∣∣
xj︷ ︸︸ ︷

V−1
j

[
−
∑
r

Cj (p
α
j + pβj ) · ur +

∑
r

uTr (Aαjr + Aβjr )(ur − uj )

]

+ V−1
j

[∑
r

Cjp
β
j · ur

]

︸ ︷︷ ︸
[BD]
≈ (pβ∇·u)|xj

+ V−1
j

[
−
ρβj

ρj
uTj
∑
r

(
Aαjr + Aβjr

)
(ur − uj )

]

︸ ︷︷ ︸
[BD]
≈

(
ρβ

ρ
∇(pα+pβ )·u

)∣∣∣∣
xj

+ V−1
j

[
−
∑
r

(ur − uj )
TAβjr (ur − uj )

]

︸ ︷︷ ︸
→ζαj ≤0

.
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Consistency proof (2/2)
back

Proof.
Consistency for volume, mass and momentum is a direct consequence of [BD]

Energy balance rewrites:

ραDtEα = −∇ · (pα + pβ)u + pβ∇ · u + ρβ

ρ
∇(pα + pβ) · u.

ραj dtE
α
j ≈

(
−∇ · (pα + pβ)u + pβ∇ · u +

ρβ

ρ
∇(pα + pβ) · u

)∣∣∣∣
xj

+ ζαj .

ραj dtE
α
j + ρβj dtE

β
j ≈

(
−∇ · (pα + pβ)u

)∣∣∣
xj

+ ζαj + ζβj ,

but ραj dtE
α
j + ρβj dtE

β
j = ρjdtEj

[BD]
≈
(
−∇ · (pα + pβ)u

)∣∣∣
xj
.

=⇒ ζαj︸︷︷︸
≤0

+ ζβj︸︷︷︸
≤0

= 0 =⇒ ζαj = ζβj = 0.
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Ideal gas entropy estimate: explicit case
Case γ ≥ 2 back

mα
j

∆t
∆S ≥ (τα

j
n)γ−1

[
ν

((
1 −

ω

2

)∑
r

ρ
β
r
n t
δuαr

nBn
jrδu

α
r
n +

ω

2

∑
r

ρ
β
r
n t
δuαj

nBn
jrδu

α
j
n

)

+
∑
r

t (uαj
n − uαr

n)Aα
jr
n(uαj

n − uαr
n) + ν

ω

2

∑
r

ρ
β
r
n t (δuαr

n − δuαj
n)Bn

jr (δuαr
n − δuαj

n)

]

+
∆t

mα
j

{
−

(τα
j

n)γ−1

2

(∑
r

Aα
jr
n(uαj

n − uαr
n) + ων

∑
r

ρ
n
rB

n
jr (δuαj

n − δuαr
n)

)2

− (γ − 1)(τα
j

n)γ−2pα
j

n
(∑

r

Cn
jr · u

α
r
n
)2

+ (γ − 1)
(∑

r

Cn
jr · u

α
r
n(τα

j
n)γ−2

)[(∑
r

t (uαj
n − uαr

n)Aα
jr
n(uαj

n − uαr
n)

)

+ ν

((
1 −

ω

2

)∑
r

ρ
β
r
n t
δuαr

nBn
jrδu

α
r
n +

ω

2

∑
r

ρ
β
r
n t
δuαj

nBn
jrδu

α
j
n

)

+ ν
ω

2

∑
r

ρ
β
r
n t (δuαr

n − δuαj
n)Bn

jr (δuαr
n − δuαj

n)

]}

−
1

2

∆t2

mα
j

2
(γ−1)

(∑
r

Cn
jr ·u

α
r
n(τα

j
n)γ−2

)(∑
r

Aα
jr
n(uαj

n − uαr
n) + ων

∑
r

ρ
n
rB

n
jr (δuαj

n − δuαr
n)

)2

.
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Ideal gas entropy estimate: semi-implicit case (1/2)
Case γ ≥ 2 back

mα
j

∆t
∆S ≥ (τα

j
n)γ−1

[
ν

((
1 −

ω

2

)∑
r

ρ
β
r
n t
δuαr

nBn
jrδu

α
r
n +

ω

2

∑
r

ρ
β
r
n t
δuαj

n+1Bn
jrδu

α
j
n+1

)

+
∑
r

t (uαj
n − uαr

n)Aα
jr
n(uαj

n − uαr
n) + ν

ω

2

∑
r

ρ
β
r
n t (δuαr

n − δuαj
n+1)Bn

jr (δuαr
n − δuαj

n+1)

]

+
∆t

mα
j

{
(τα

j
n)γ−1

[
−

1

2

(∑
r

Aα
jr
n(uαj

n − uαr
n)

)2

+
1

2

(
ων
∑
r

ρ
n
rB

n
jr (δuαj

n+1 − δuαr
n)

)2 ]

+ (γ − 1)
(∑

r

Cn
jr · u

α
r
n(τα

j
n)γ−2

)
×

[(∑
r

t (uαj
n − uαr

n)Aα
jr
n(uαj

n − uαr
n) −

∑
r

pα
j

nCn
jr · u

α
r
n

)

+ ν

((
1 −

ω

2

)∑
r

ρ
β
r
n t
δuαr

nBn
jrδu

α
r
n +

ω

2

∑
r

ρ
β
r
n t
δuαj

n+1Bn
jrδu

α
j
n+1

)

+ ν
ω

2

∑
r

ρ
β
r
n t (δuαr

n − δuαj
n+1)Bn

jr (δuαr
n − δuαj

n+1)

]}

+
∆t2

mα
j

2
(γ − 1)

{(∑
r

Cn
jr · u

α
r
n(τα

j
n)γ−2

)[
−

1

2

(∑
r

Aα
jr
n(uαj

n − uαr
n)

)2

+
1

2

(
ων
∑
r

ρ
n
rB

n
jr (δuαj

n+1 − δuαr
n)

)2 ]}
.

CEA | Würzburg, September 2015 | PAGE 6/9



Ideal gas entropy estimate: semi-implicit case (2/2)
Case γ ≥ 2 back

In order to get the rationnal function, it remains to develop δuαj
n+1

C︷ ︸︸ ︷(
I + ων∆t

(
1

mα
j

+
1

mβ
j

)∑
r

ρnrB
n
jr

)
δuαj

n+1

= δuαj
n + ∆t

∑
r

δ

(
An

jr (ur
n − uj

n)

mj

)α

+ ων∆t

(
1

mα
j

+
1

mβ
j

)∑
r

ρnrB
n
jrδu

α
r
n,

C being a SPD matrix.
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“Sod shock tube”, ν = 105

back

Time t = 0.14.
Density plot

AP scheme non AP scheme
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“Sod shock tube”, ν = 105

back

Time t = 0.14.
Internal energy plot

AP scheme non AP scheme
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“Sod shock tube”, ν = 105

back

Time t = 0.14.
Velocity plot

AP scheme non AP scheme
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“Sod shock tube”, ν = 105

back

Time t = 0.14.
Velocity difference plot

AP scheme non AP scheme
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